Learning Biped Locomotion from First Principles on a Simulated Humanoid Robot Using Linear Genetic Programming
نویسندگان
چکیده
We describe the first instance of an approach for control programming of humanoid robots, based on evolution as the main adaptation mechanism. In an attempt to overcome some of the difficulties with evolution on real hardware, we use a physically realistic simulation of the robot. The essential idea in this concept is to evolve control programs from first principles on a simulated robot, transfer the resulting programs to the real robot and continue to evolve on the robot. The Genetic Programming system is implemented as a Virtual Register Machine, with 12 internal work registers and 12 external registers for I/O operations. The individual representation scheme is a linear genome, and the selection method is a steady state tournament algorithm. Evolution created controller programs that made the simulated robot produce forward locomotion behavior. An application of this system with two phases of evolution could be for robots working in hazardous environments, or in applications with remote presence robots.
منابع مشابه
An Evolutionary Based Approach for Control Programming of Humanoids
We describe the first instance of a novel approach for control programming of humanoid robots, based on evolution. To overcome some of the difficulties with evolution on real hardware, we use a physically realistic simulation of the robot. The essential idea is to evolve control programs from first principles on a simulated robot, transfer the programs to the real robot, and continue to evolve ...
متن کاملOptimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk
Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...
متن کاملNonparametric representation of an approximated Poincaré map for learning biped locomotion
We propose approximating a Poincaré map of biped walking dynamics using Gaussian processes. We locally optimize parameters of a given biped walking controller based on the approximated Poincaré map. By using Gaussian processes, we can estimate a probability distribution of a target nonlinear function with a given covariance. Thus, an optimization method can take the uncertainty of approximated ...
متن کاملNature-Inspired Optimization for Biped Robot Locomotion and Gait Planning
Biped locomotion for humanoid robots is a challenging problem that has come into prominence in recent years. As the degrees of freedom of a humanoid robot approaches to that of humans, the need for a better, flexible and robust maneuverability becomes inevitable for real or realistic environments. This paper presents new motion types for a humanoid robot in coronal plane on the basis of Partial...
متن کاملA System for Learning to Locomotion Using Adaptive Oscillators in the Humanoid Robot
This paper proposes a central pattern generators based control architecture using a frequency adaptive oscillator for learning to locomotion of humanoid robot. Central pattern generators are biological neural networks that can produce coordinated multidimensional rhythmic signals, under the control of simple input signals. They are found both in vertebrate and invertebrate animals for the contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003